Independent regulation of sterol regulatory element-binding proteins 1 and 2 in hamster liver.
نویسندگان
چکیده
Two sterol regulatory element-binding proteins (SREBPs, designated SREBP-1 and SREBP-2), each approximately 1150 amino acids in length, are attached to membranes of the endoplasmic reticulum and nuclear envelope in human and hamster tissue culture cells. In the absence of sterols, soluble fragments of approximately 470 amino acids are released from both proteins by proteolytic cleavage. The soluble fragments enter the nucleus, where they bind to sterol regulatory elements in the promoters of genes encoding the low density lipoprotein receptor and 3-hydroxy-3-methylglutaryl CoA synthase, thereby activating transcription. Proteolytic processing of both SREBPs is blocked coordinately by sterol overloading and enhanced coordinately when sterols are depleted by treatment with an inhibitor of cholesterol synthesis. In contrast to these findings in cultured cells, the current data show that SREBP-1 and -2 are not coordinately regulated in hamster liver. In untreated animals the soluble fragment of SREBP-1, but not of SREBP-2, was detected by immunoblotting of a liver nuclear extract. Depletion of sterols by treatment with a bile acid-binding resin (colestipol) and a cholesterol synthesis inhibitor (mevinolin) led to a marked increase in the nuclear form of SREBP-2 and a reciprocal decline in the nuclear form of SREBP-1. These findings suggest that SREBP-1 is responsible for basal transcription of the low density lipoprotein receptor and 3-hydroxy-3-methylglutaryl CoA synthase genes in hamster liver and that SREBP-2 is responsible for the increased transcription that follows sterol depletion with a bile acid-binding resin and a cholesterol synthesis inhibitor.
منابع مشابه
Isolation of sterol-resistant Chinese hamster ovary cells with genetic deficiencies in both Insig-1 and Insig-2.
Insig-1 and Insig-2, a pair of endoplasmic reticulum (ER) membrane proteins, mediate feedback control of cholesterol synthesis through their sterol-dependent binding to the following two polytopic ER membrane proteins: sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP) and 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Sterol-induced binding of Insigs to SCAP...
متن کاملGene expression of sterol regulatory element-binding proteins in hamster small intestine.
Gene expression of sterol regulatory element-binding proteins 1a, 1c, and 2 (SREBP-1a, -1c, and -2) and of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) synthase, HMG-CoA reductase, and the low density lipoprotein (LDL) receptor was examined in hamster small intestine. SREBP-1c transcript predominated over SREBP-1a. mRNA levels for SREBP-1a, -1c, and -2, LDL receptor, and HMG-CoA synthase wer...
متن کاملIsolation of cholesterol-requiring mutant Chinese hamster ovary cells with defects in cleavage of sterol regulatory element-binding proteins at site 1.
The synthesis and uptake of cholesterol requires transcription factors designated sterol regulatory element-binding proteins (SREBPs). SREBPs are bound to membranes in a hairpin orientation with their transcriptionally active NH2-terminal segments facing the cytosol. The NH2-terminal segments are released from membranes by two-step proteolysis initiated by site 1 protease (S1P), which cleaves i...
متن کاملTHE EFFECTS OF 4 WEEKS HIGH INTENSITY INTERVAL TRAINING ON MAMMALIAN RAPAMYCIN TARGET PROTEIN (MTOR) AND STEROL TRANSCRIPTION FACTOR REGULATORY PROTEIN-1 (SREBP1) PROTEINS CONTENT IN DIABETICS OBESE RATS ADIPOSE TISSUE
Background: Obesity and type 2 diabetes can impair the function of important cellular pathways. Activation of the mTOR pathway results in regulation of the SREBP1 protein for metabolism and regulation of adipose tissue. The aim of this study was to investigate the effect of 4 weeks of high intensity interval training on the content of mTOR and SREBP1 in adipose tissue of type 2 diabetic rats. ...
متن کاملAmplification of the gene for SCAP, coupled with Insig-1 deficiency, confers sterol resistance in mutant Chinese hamster ovary cells.
The endoplasmic reticulum membrane proteins Insig-1 and Insig-2 limit cholesterol synthesis, in part through their sterol-dependent binding to sterol-regulatory element binding protein (SREBP) cleavage-activating protein (SCAP). This binding prevents proteolytic processing of SREBPs, membrane-bound transcription factors that enhance cholesterol synthesis. We report here the characterization of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 92 4 شماره
صفحات -
تاریخ انتشار 1995